Stable Diffusion AI算圖使用手冊(2-4):ASRock AI QuickSet動手玩,最佳化AMD顯示卡提升10倍算圖效能

Stable Diffusion AI算圖使用手冊(2-4):ASRock AI QuickSet動手玩,最佳化AMD顯示卡提升10倍算圖效能

ADVERTISEMENT

ASRock推出的AI QuickSet軟體套件包含Stable Diffusion WebUI並支援透過Microsoft Olive加速算圖效能,根據實測可以帶來10倍效能表現。

文章目錄

安裝與模型最佳化

先前AMD在官方部落格張貼了在Stable Diffusion WebUI DirectML分枝版本的使用教學,可以透過Microsoft Olive工具將原本PyTorch格式的模型轉換為ONNX格式,並在運算時使用DirectML API,達到接近10倍的效能表現。

不過筆者在跟隨教學操作的過程中遇到一些技術問題,目前尚無法排除,導致無法套用效能最佳化,好在ASRock推出的AI QuickSet軟體套件,大幅簡化整體安裝流程,使用者只需在精靈的協助下安裝程式,不需額外的設定就可以享受效能AI大幅提升的優勢。

不過需要注意的是,電腦中需要有ASRock AMD Radeon RX 7000系列顯示卡才能安裝AI QuickSet。ASRock官方也表示目前AI QuickSet程式將會持續發展,並在未來加入更多實用的AI應用程式,為使用者帶來更多元便捷的AI功能。

AI QuickSet下載位置:
https://www.asrock.com/microsite/aiquickset/index.html

根據AMD官方提供的數據,使用Stable Diffusion WebUI DirectML分枝版本搭配轉換為ONNX格式的模型,可以帶來近10倍的算圖效能表現。

ASRock推出的AI QuickSet軟體套件可以簡化Stable Diffusion WebUI DirectML分枝版本的安裝手續。

這次測試使用的硬體為ASRock Radeon RX 7800XT Steel Legend顯示卡。

讀者可以在ASRock官方網站下載AI QuickSet。

安裝手續與一般Windows應用程式相同。

以1.1.13版為例,安裝完成後,桌面會出現3個捷徑圖示。

出圖效能提升10倍

如果想要使用最佳化效能的AI算圖環境的話,可以執行「Launch Stable Diffusion WebUI ONNX」捷徑。不過需要注意的是,目前DirectML版本僅支援使用Stable Diffusion 1.5基礎模型,網頁介面中的Olive模型轉換工具無法用於轉換其他Checkpoint模型(程式以Hard coding方式指定模型檔案),且尚不支援套LoRA,功能限制比較多。若想要使用其他模型則可以執行「Launch Stable Diffusion WebUI」捷徑。

開啟DirectML版本的Stable Diffusion WebUI介面後,需在左上角的Stable Diffusion checkpoint下拉式選單選擇「stable-diffusion-v1-5-olive [Optimized]」,其餘操作則與一般版本相同。

筆者使用ASRock Radeon RX 7800XT Steel Legend進行測試,過程將Batch size分別設定為1、4,Batch count則固定為1,執行2輪測試確定測試結果無極端值後,取平均作為測試成績。

從結果可以看到,AMD陣營顯示卡在最佳化之後,效能有接近在768 x 768解析度下,Batch size為1時每次計算1張圖片,DirectML版本的效能為一般版本的約4.64倍。若將Batch size設定為4,每次同時計算4張圖片,DirectML版本的速度不會受到太大的影響,但一般版本的速度卻會嚴重下降,導致效能落差達到45.29倍。

第一次執行的時候,程式會自動安裝需要的檔案並轉換模型,需要等待比較久的時間。

第二次執行之後開啟的速度就會恢復正常。

執行時需在左上角的Stable Diffusion checkpoint下拉式選單選擇「stable-diffusion-v1-5-olive [Optimized]」,以套用最佳化模型。

DirectML版本的參數設定與執行結果。

在Batch size設定為1時,DirectML版本的效能為一般版本的約4.64倍。

AMD陣營的Olive工具可以帶來有效的效能提升,但與NVIDIA提供的TensorRT最佳化工具相比方便性與實用度都稍嫌不足,同樣有待日後更新改善。

回到Stable Diffusion AI算圖系列文章目錄

國寶大師 李文恩
作者

電腦王特約作者,專門負責硬派內容,從處理器、主機板到開發板、零組件,尖端科技都一手包辦,最近的研究計畫則包括Windows 98復活與AI圖像生成。

使用 Facebook 留言
發表回應
謹慎發言,尊重彼此。按此展開留言規則