2024年諾貝爾化學獎再頒AI,Google成本屆諾貝爾獎最大贏家

2024年諾貝爾化學獎再頒AI,Google成本屆諾貝爾獎最大贏家

瑞典皇家科學院決定將2024年諾貝爾化學獎授予三位科學家。其中,一半授予美國華盛頓大學教授大衛·貝克 (David Baker),以表彰其在計算蛋白質設計方面的貢獻;另一半則共同授予Google DeepMind公司的丹米斯·哈薩比斯(Demis Hassabis)和約翰·喬普(John M. Jumper),以表彰其在蛋白質結構預測方面的貢獻。

2024年諾貝爾化學獎再頒AI,Google成本屆諾貝爾獎最大贏家

他們將分得總額1100萬瑞典克朗的獎金。

諾獎官網稱,今年的三位諾貝爾化學獎得主利用“蛋白質”——生命中精妙的化學工具,破解了蛋白質驚人結構的密碼。其中,化學獎得主貝克成功完成了幾乎不可能完成的任務,製造出了全新的蛋白質。他的共同獲獎者哈薩比斯和喬普開發一種 AI 模型AlphaFold2來解決一個50年前的問題:以巨大的技術潛力預測蛋白質的複雜結構。

很顯然,繼昨日諾貝爾物理學獎之後,AI 再成諾獎焦點,48歲的Google AI 大佬哈薩比斯和39歲的喬普獲得了諾貝爾化學獎。加上辛頓,AI 學者們在2024年諾獎中獲得了大滿貫。

有鑑於辛頓先前也在Google工作、以及現在還在Google工作的哈薩比斯,Google可以說是本屆諾貝爾獎最大贏家。

要知道,哈薩比斯昨天還在祝賀加拿大多倫多大學教授傑弗里·辛頓(Geoffrey E. Hinton)獲得諾貝爾物理學獎,甚至前東家Google為辛頓舉辦慶功宴,Google CEO桑達爾·皮查伊(Sundar Pichai)、Google首席科學家傑夫·迪恩(Jeff Denn)、OpenAI前聯合創始人伊利亞·蘇茨克維(Ilya Sutskever)等人悉數到場。

2024年諾貝爾化學獎再頒AI,Google成本屆諾貝爾獎最大贏家

如今,哈薩比斯和他的Google AI 團隊終於可以祝賀自己了。

這是 AI 產業最光輝的時刻,對於諾獎來說也實屬罕見,諾貝爾物理學獎、化學獎都給予深度學習、AI 模型技術很高的讚譽。

「很高興你們現在都趕上進度了!」喬普的這句話,讓更多人開始思考,到底是諾獎份量降低,還是 AI 已經革了物理、化學這兩大學科的命?

通過化學和 AI 揭示了蛋白質的秘密

蛋白質通常由20種不同的氨基酸組成,以無數種方式組合,可以說是生命的基石。利用 DNA 中儲存的資訊作為藍圖,氨基酸在我們的細胞中連接在一起形成“長鏈”。

蛋白質的神奇之處在於其結構——氨基酸鏈扭曲並摺疊成獨特的(有時是獨一無二的)三維結構。正是這種結構賦予蛋白質功能。一些蛋白質成為可以製造肌肉或羽毛的化學構件,而另一些則可能成為激素或抗體。它們中的許多形成酶,以驚人的精度驅動生命的化學反應。而位於細胞表面的蛋白質也很重要,它們充當細胞與周圍環境之間的通訊管道。

但對於學術界來說,一直困擾化學家們50多年來的一個問題是:如何根據氨基酸序列預測蛋白質的三維結構。

美國科學家克里斯蒂安·安芬森 (Christian Anfinsen)曾做出了另一項早期發現。他利用各種化學技巧,成功使現有蛋白質展開,然後再次摺疊起來。有趣的是,蛋白質每次都呈現出完全相同的形狀。1961年,他得出結論,蛋白質的三維結構完全由蛋白質中的氨基酸序列決定。這讓他於1972年獲得諾貝爾化學獎。

然而,安芬森的邏輯中卻存在一個悖論,另一個美國人賽勒斯·列文塔爾在1969年就指出了這一點。他計算出,即使一種蛋白質只由100種氨基酸組成,理論上該蛋白質至少可以呈現10的47次方種不同的三維結構。如果氨基酸鏈隨機摺疊,那麼找到正確的蛋白質結構所需的時間將比宇宙的年齡還要長,在細胞中這只需要幾毫秒。那麼,氨基酸鏈究竟是如何摺疊的呢?

貝克、哈薩比斯、喬普三位2024年諾貝爾化學獎得主就解決了上述問題。

1962年出生於美國華盛頓州西雅圖的貝克,曾在哈佛大學學習時,選擇了哲學和社會科學專業。然而,在學習進化生物學課程時,他偶然發現了現已成為經典教科書的《細胞分子生物學》的初版。這導致他的人生方向發生了改變,從而開始探索細胞生物學。1989年,他完成了美國加州大學柏克萊分校的博士學位。

1993年,貝克開始擔任西雅圖華盛頓大學的課題組長時,他接受了生物化學的巨大挑戰。通過巧妙的實驗,他開始探索蛋白質如何摺疊。這為他提供了深刻的見解,並在20世紀 90 年代末開始開發可以預測蛋白質結構的電腦軟體:Rosetta。

1998 年,貝克首次使用 Rosetta 參加CASP(“蛋白質結構預測關鍵評估”)競賽,與其他參賽者相比,它的表現非常出色。這次成功帶來了一個新想法:可以反向使用該軟體,貝克團隊不必在 Rosetta 中輸入氨基酸序列並得到蛋白質結構,而是可以輸入所需的蛋白質結構並獲得其氨基酸序列的建議,這將使他們能夠建立全新的蛋白質。

這一想法最終也完成了成果落地,事實證明,Rosetta確實可以建構蛋白質。2003年,貝克又成功利用這些基石設計出一種與其他蛋白質不同的新蛋白質Top7。此後,他的研究小組不斷創造出一個又一個富有想像力的蛋白質,包括可用作藥物、疫苗、奈米材料和微型感測器的蛋白質技術,其開發的蛋白質Top7幾乎與他們設計的結構完全一致。

如今,貝克在華盛頓大學任職教授職位。

與此同時,AI 技術也被認為是攻克蛋白質結構預測的關鍵法寶。

事實上,在蛋白質中,氨基酸以長鏈連接在一起,摺疊起來形成三維結構,這對蛋白質的功能至關重要。自 1970 年代以來,研究人員一直試圖根據氨基酸序列預測蛋白質結構,但這非常困難。

然而,直到2018年,一位西洋棋大師、神經科學專家和 AI 技術先驅進入該領域,才讓“蛋白質結構預測”這一領域取得新突破。

在此之前,讓我們簡單瞭解一下哈薩比斯的背景:他從四歲開始下西洋棋,13 歲時就達到大師級水平;十幾歲時他開始了程式設計師和遊戲開發者的職業生涯,並探索AI、涉足神經科學。2010年,他與他人共同創立了 DeepMind,致力於開發 AI 模型技術,並於2014年被出售給Google。兩年後,DeepMind引起了全球關注,當時該公司實現了 AI 領域的“聖盃”:AlphaGo擊敗了世界圍棋冠軍、職業九段選手李世石(又譯李世乭)。

2018年,哈薩比斯和喬普提出了AlphaFold 1 AI模型技術。當時,CASP預測的蛋白質結構最多隻能達到40%的精準率,而AlphaFold精準率接近 60%,他們最終獲勝,而優異的結果讓許多人感到意外——這是意料之外的進展,但解決方案還不夠好,要想成功,預測結果與目標結構的精準率必須達到90%。

2020年,哈薩比斯和喬普提出了AlphaFold2 AI 模型。借助該模型,他們能夠預測研究人員發現的幾乎所有2億種蛋白質的結構。自他們取得突破以來,來自190個國家的200多萬人使用了 AlphaFold2。在眾多科學應用中,研究人員現在可以更好地瞭解抗生素耐藥性並建立可分解塑料的酶的圖像。

2024年諾貝爾化學獎再頒AI,Google成本屆諾貝爾獎最大贏家

在這背後,喬普功不可沒。

喬普1985年出生於美國阿肯色州小岩城,2017年獲得美國伊利諾伊州芝加哥大學博士學位。事實上,他在2008年就使用超級電腦模擬蛋白質及其動力學,並意識到物理知識可以幫助解決醫學問題。2011年,當喬普開始攻讀理論物理學博士學位時,他對蛋白質產生了濃厚的興趣。為了節省電腦容量(當時大學里電腦容量非常緊缺),他開始開發更簡單、更巧妙的方法來模擬蛋白質動力學。2017年,他剛剛完成博士學位,就聽到有傳言稱,GoogleDeepMind已經開始秘密預測蛋白質結構。他向DeepMind傳送一份工作申請,他在蛋白質模擬方面的經驗使他對如何改進AlphaFold有了創造性的想法,最終,他主導了這次AlphaFold2的研究。

而哈薩比斯和喬普成功研發出的AlphaFold2,利用Transformers神經網路,在大量、高通量資料中可以比以前更靈活地預測蛋白質結構,並行現藥物靶點。

2024年5月8日,GoogleDeepMind和其英國子公司Isomorphic Labs聯合團隊在《自然》雜誌上聯合發佈全新AI蛋白質結構預測模型AlphaFold 3,可精準預測生物分子相互作用的結構。對於蛋白質與其他分子的相互作用,與現有預測方法相比,AlphaFold 3改進至少50%;對於一些重要的相互作用領域,AlphaFold 3預測精(精準)度提高一倍(100%),可精準預測蛋白質、DNA、RNA、配體等的結構以及它們如何相互作用,有望幫助人們治療癌症、免疫性疾病等。

根據諾獎官網,諾貝爾委員會認為,沒有蛋白質,生命就無法存在,我們現在可以預測蛋白質結構並設計自己的蛋白質,這給人類帶來了最大的利益。哈薩比斯和喬普的研究成果,從根本上改革了蛋白質結構預測以及 AI 模型的技術研究工作。

諾貝爾化學獎委員會主席海納·林克 (Heiner Linke) 表示:「今年獲得認可的發現之一與神奇蛋白質的構造有關。另一項發現則與實現 50 年前的夢想有關:根據氨基酸序列預測蛋白質結構。這兩項發現都開闢了廣闊的可能性。」

如今,蛋白質作為化學工具的功能技術反映在生命的多樣性中,比如研究小分子藥物、帶來新的奈米材料、靶向藥物、更快的疫苗開發、最小的感測器和更綠色的化學工業等。它讓我們更好地瞭解生命的運作方式——AI for Science。

AI 革了物理與化學的命?

諾貝爾化學獎是諾貝爾獎的六個獎項之一,由瑞典皇家科學院每年頒發給“在化學領域作出最重要發現或發明”的傑出科學家。據瑞典著名化學家、企業家、發明家諾貝爾(Alfred Nobel)的遺願,該獎由諾貝爾基金會管理,由瑞典皇家科學院選出5名成員組成一個委員會來評選出獲獎者。

自1901年以來至2023年諾貝爾化學獎共頒發了115次,沒有頒發的8年分別是1916、1917、1919、1924、1933、1940、1941和1942年。共194人次獲獎,實際獲獎個人為192人,因為英國科學家Frederick Sanger於1958年和1980年兩次獲獎,美國科學家Barry Sharpless於2001年和2022年兩次獲獎。

從2024年諾貝爾物理學獎,到今天的化學獎,AI 成為了今年諾獎中令人意外的熱門技術。這其實讓很多媒體不管是提前預測“存貨”還是可能得到諾獎洩漏資訊,成為了流量的焦點,但對於很多物理領域學者和化學家來說,今年的諾獎不僅“無趣”,甚至還有點感到沮喪,因為理論物理和理論化學都得不到學術界聖盃——諾獎的認可。

比如,化學諾獎得主哈薩比斯理論上是昨天獲得物理諾獎Hinton(辛頓)的徒孫,哈薩比斯是Peter Dayan的博士後,Peter Dayan是Hinto的博士後,這些都是 AI 和電腦界的大老,而非物理和化學界的大家。

因此,有很多人評價認為:物理與化學技術都還不如 AI 更有用處。這種說法並不正確。它說明的是AI正在給科學發現帶來的深刻變革:物理獎是Science for AI,而化學獎則是AI for Science,它們將引領科學新的發現。

 

 

cnBeta
作者

cnBeta.COM(被網友簡稱為CB、cβ),官方自我定位「中文業界資訊站」,是一個提供IT相關新聞資訊、技術文章和評論的中文網站。其主要特色為遊客的匿名評論及線上互動,形成獨特的社群文化。

使用 Facebook 留言
發表回應
謹慎發言,尊重彼此。按此展開留言規則