五大洲的 20 間醫院合力訓練神經網路,聯合學習打造出醫療AI

五大洲的 20 間醫院合力訓練神經網路,聯合學習打造出醫療AI

甫在《Nature Medicine》期刊上發表的研究結果表明,聯合學習 (federated learning) 打造出可以普及到各醫療機構的強大人工智慧 (AI) 模型,這項發現有望更進一步將聯合學習用在能源、金融服務、製造及其它領域。 

該研究的第一作者 Ittai Dayan 博士表示:「通常在開發 AI 的過程中,使用一間醫院的資料來建立演算法時,在其它醫院不見得能正常運作。但是,使用聯合學習及其它地區客觀的多模態資料來開發模型,便能將該模型普及到其它醫院,以協助世界各地第一線的醫生。」

醫療照護產業已正進行其它大規模的聯合學習專案,包括五名研究人員的團隊在評估乳房 X 光檢查結果,以及製藥業龍頭拜耳公司正訓練用於脾臟分割的 AI 模型。聯合學習還能幫助能源公司分析地震和井壁資料、協助金融公司改善詐欺偵測模型、協助自動駕駛車研究人員打造能夠歸納不同國家駕駛行為的 AI。 

開發 AI 模型的公司和研究機構通常無法順利取得各種可用資料,而飽受巧婦難為無米之炊的苦惱。大多數組織必須和同行分享資料,才能蒐集到足夠的資料以訓練強大又能夠普及的模型。但在許多情況下,資料隱私法規又使他們無法在共用的超級電腦或雲端伺服器上,直接分享患者病歷或專有資料集等資料。而這就是聯合學習可以派上用場的地方。

這項在《Nature Medicine》期刊上所發表名為 EXAM (為 EMR CXAModel 的縮寫) 的全新研究項目,在 Mass General Brigham 與 NVIDIA 的領軍下,匯集橫跨五大洲的 20 間醫院合力訓練一個神經網路,能夠預測出現新冠肺炎症狀的患者在到達急診科等護理點的 24 及 72 小時後,可能需要補充氧氣的程度。這是迄今規模最大、最多元的臨床聯合學習研究項目之一。 

聯合學習讓 EXAM 研究案的合作對象能夠打造出一個 AI 模型,從每個參與醫院所提供的胸部 X 光影像、患者的生命徵象、人口統計資料及實驗室數值中學習,又不會看到存放在各地私用伺服器中的隱私資料。

每間醫院使用本地端的 NVIDIA GPU 來訓練同一套神經網路的副本。在訓練的過程中,每間醫院定期把更新完的模型權重發送到中央伺服器,全球版本的神經網路在這裡匯集更新後的模型,形成一個新的全球版本模型。這就像是分享試題的答案,但不透露任何用來找出答案的學習材料。

五大洲的 20 間醫院合力訓練神經網路,聯合學習打造出醫療AI

全球版本的 EXAM 模型在與所有參與機構分享資料後,AI 模型的平均效能提高了16%。研究人員發現,與透過任何單一機構訓練的模型相比,普及性平均提高了 38%。對於擁有較小型資料集的醫院來說,效能提升尤其顯著,如圖所示。 

泰國朱拉隆功大學 (Chulalongkorn University) 與朱拉隆功國王紀念醫院 (King Chulalongkorn Memorial Hospital) 醫學 AI 中心聯合主任 Sira Sriswasdi 表示:「聯合學習讓全球各地的研究人員能夠合作朝著同一個目標前進,也就是發展一個能夠從每個人的資料中學習且進行歸納的模型。有了 NVIDIA GPU 及 NVIDIA Clara 軟體,參與這項研究的過程本身並不困難,卻能產生影響深遠的結果。」該醫院是合作進行 EXAM 研究的20 間醫院之一。

Hsuann
作者

T客邦特約編輯 ,負責產業即時報導、資訊整理

使用 Facebook 留言
發表回應
謹慎發言,尊重彼此。按此展開留言規則